

Industrielle Automation

NEIGUNGS-SENSOREN MIT IO-LINK-TECHNOLOGIE

😵 IO-Link

PARAMETRIER-ANLEITUNG

Sense it! Connect it! Bus it! Solve it!

Neigungssensoren mit IO-Link-Technologie – Allgemeine Hinweise

1 Allgemeine Hinweise

Dieser Abschnitt beschreibt den sicheren Umgang mit elektrischen Geräten und sollte von Ihnen unbedingt vor dem Gebrauch der Geräte gelesen werden.

Die vorliegende Parametrieranleitung enthält die erforderlichen Informationen für die Inbetriebnahme und Parametrierung der Neigungssensoren Baureihe B2N360 von TURCK. Die Anleitung wurde speziell für qualifiziertes Personal mit dem nötigen Fachwissen konzipiert.

Bestimmungsgemäßer Gebrauch

Die in dieser Anleitung beschriebenen Geräte sind ausschließlich für Einsatzfälle vorgesehen, die in der jeweiligen technischen Beschreibung genannt sind, und dürfen nur in Verbindung mit zertifizierten Geräten und Komponenten verwendet werden.

Der einwandfreie und sichere Betrieb der Geräte setzt sachgemäßen Transport, sachgerechte Lagerung, Aufstellung und Montage sowie sorgfältige Bedienung und Wartung voraus.

Neigungssensoren mit IO-Link-Technologie – Inhalt

Neigungssensoren B2N360 - mit IO-Link-Technologie

1	Allgemeine Hinweise	2
2	Beschreibung IO-Link-Technologie	4
3	Inbetriebnahme und Parametrierung	5
4	Parametrierung über Teach-Funktion	6
5	Parametrierung über PACTware™ und IODD	7
6	Allgemeine technische Daten	12
7	Technische Daten IO-Link	13

Neigungssensoren mit IO-Link-Technologie – Beschreibung IO-Link-Technologie

2 IO-Link-Technologie

Ein IO-Link-System besteht aus IO-Link-Devices (Sensoren oder Aktoren), einem Standardkabel für den Sensor- oder Aktoranschluss und einem IO-Link-Master. Ein IO-Link-Master kann über einen oder mehrere Ports verfügen. An jeden Port kann immer nur ein IO-Link-Gerät angeschlossen werden. Somit ist IO-Link eine Punkt-zu-Punkt-Kommunikation und kein Feldbus.

2.1 Betriebsarten

Die Neigungssensoren können im SIO-Mode (Standard-I/O-Modus) oder im IO-Link-Kommunikationsmodus betrieben werden. Nach dem Einschalten befindet sich das Gerät immer im SIO-Mode.

2.1.1 SIO-Mode

In der Betriebart SIO-Mode kann der Sensor über eine Standard-Eingabebaugruppe betrieben werden; ein IO-Link-Master ist in diesem Fall nicht erforderlich. Dabei lassen sich Pin 2 als Schaltausgang, Pin 5 und Pin 6 als Analogausgänge verwenden. Pin 4 ist als Schaltausgang ausgelegt und kann zusätzlich für den IO-Link genutzt werden.

2.1.2 IO-Link-Kommunikationsmodus

Für den Betrieb im IO-Link-Modus muss der Sensor an eine IO-Link-fähige Baugruppe (Master) angeschlossen werden. Der Sensor arbeitet im COM2-Modus bei 38,4 kBaud. Die IO-Link-Kommunikation zwischen dem Sensor und dem Master erfolgt über Pin 4. Der Ausgang auf Pin 2 behält dabei seine Funktionalität. Im Kommunikationsmodus werden die Prozessdaten (zyklisch) übertragen. Darüber hinaus kann der Sensor im Kommunikationsmodus über den Master parametriert werden.

Einzelheiten zur Parametrierung des Sensors finden Sie weiter hinten in den Parameterlisten.

Neigungssensoren mit IO-Link-Technologie – Inbetriebnahme

Industrielle Automation

3 Inbetriebnahme

Zum Anschluss des Neigungssensors an den IO-Link-Master wird das Adapterkabel RKC8.4T-1,5-RSC4T/TX320, Ident-Nr.: 6625002 (M12, 8-polig, Sensorseite auf M12, 4-polig, IO-Link-Masterseite) empfohlen.

Die Ports des IO-Link-Masters können unterschiedlich konfiguriert werden. Ist ein Port auf "SIO-Mode" eingestellt, verhält sich der Master an diesem Port wie ein normaler digitaler Eingang. Ist der Port auf "Communication-Mode" eingestellt, versucht der Master, den angeschlossenen Sensor über ein definiertes Signal auf der Schaltleitung zu finden. Dieser Vorgang wird als "Wake-up" bezeichnet. Zur weiteren Information lesen Sie bitte auch das Handbuch Ihres IO-Link-Masters.

Befindet sich der Sensor im IO-Link-Modus, kann das Gerät über den Master parametriert werden. Bitte lesen Sie dazu Kapitel 7.

Parametrierung über PACTware™

PACTware[™] ist eine offene Plattform, in die beliebige Feldgerätehersteller die Bedienung ihrer Geräte integrieren können. Dazu verwendet PACTware[™] eine einheitliche Schnittstelle zwischen dem Rahmenprogramm und den einzelnen Softwaremodulen zur Gerätebedienung. Dadurch sind moderne und benutzerfreundliche Bedienkonzepte realisierbar.

Die Verbindung zwischen Sensor und PC wird über den USB-IO-Link-Master hergestellt. Um die TURCK-Neigungssensoren über PACTware[™] bedienen zu können, werden zusätzlich zur PACTware[™]-Software auch der IODD-Interpreter und die sensorspezifische IODD benötigt (IODD = IO Device Description). Diese Tools stehen auf der TURCK-Website zur Verfügung.

Spezielle Hinweise zu den Möglichkeiten und Funktionen der Parametrierung entnehmen Sie bitte den weiter hinten aufgeführten Parameterlisten; weiterführende Informationen zum Thema PACTware[™] finden Sie unter www.turck.com.

Parametrierung über Teach-Funktion

Der Sensor kann über eine "Teach-Funktion" angepasst werden. Pin 8 dient hierbei als Teach-Eingang, wobei durch Brücken von Pin 8 und Pin 3 (GND) oder von Pin 8 und Pin 1 (U_B) der Neigungssensor parametriert wird. Zum einfachen Teachen dient der optional erhältliche Teach-Adapter TX3-Q20L60 (Ident-Nr. 6967118), der per Kippschalter die Teach-Eingänge aktiviert.

Neigungssensoren mit IO-Link-Technologie – Parametrierung über Teach-Funktion

4 Parametrierung über Teach-Funktion

Parameter	Teach-Eingang	LED-Anzeige	
Zur Einstellung des Nullpunk	t-Offsets und des Messbereichs muss der Sensor vor dem te	eachen in die entsprechende Position gebracht werden.	
Nullpunkt-Offset (siehe Hinweis, Seite 7)	Pin 3 (GND) und Pin 8 für 5 s brücken	LED blinkt gelb – nach 1 s: LED leuchtet gelb dauerhaft – nach 3 s: LED blinkt gelb – nach 5 s: LED leuchtet gelb dauerhaft	
Messbereich Anfang, x-Achse (siehe Hinweis, Seite 7)	Pin 1 (U _B) und Pin 8 für 1 s brücken	LED blinkt gün – nach 1 s: LED leuchtet grün dauerhaft	
Messbereich Ende, x-Achse (siehe Hinweis, Seite 7)	Pin 1 (U _B) und Pin 8 für 3 s brücken	LED blinkt gün – nach 1 s: LED leuchtet grün dauerhaft – nach 3 s: LED blinkt grün	
Messbereich Anfang, y-Achse (siehe Hinweis, Seite 7)	Pin 3 (GND) und Pin 8 für 1 s brücken	LED blinkt gelb – nach 1 s: LED leuchtet gelb dauerhaft	
Messbereich Ende, y-Achse (siehe Hinweis, Seite 7)	Pin 3 (GND) und Pin 8 für 3 s brücken	LED blinkt gelb – nach 1 s: LED leuchtet gelb dauerhaft – nach 3 s: LED blinkt gelb	
Modus für Voreinstellung "Feste Winkelbereiche"	Pin 1 (U _B) und Pin 8 für 10 s brücken Innerhalb von 10 s muss gebrückt oder der Taster betä- tigt werden, sonst wird dieser Modus verlassen	LED blinkt grün – nach 10 s: LED grün dauerhaft	
-10°+10°	Pin 3 (GND) und Pin 8 einmal kurzzeitig brücken	LED blinkt einmal gelb	
-45°+45°	Pin 3 (GND) und Pin 8 zweimal kurzzeitig brücken	LED blinkt zweimal gelb	
-60°+60°	Pin 3 (GND) und Pin 8 dreimal kurzzeitig brücken	LED blinkt dreimal gelb	
-85°+85°	Pin 3 (GND) und Pin 8 viermal kurzzeitig brücken	LED blinkt viermal gelb	
Modus für Voreinstellung "Funktion"	Pin 1 (U _B) und Pin 8 für 10 s brücken Innerhalb von 10 s muss gebrückt oder der Taster betä- tigt werden, sonst wird dieser Modus verlassen	LED leuchtet grün dauerhaft – nach 10 s: LED blinkt grün	
Modus 1 "Obere Halbkugel" ± 90°, Werkseinstellung	Pin 1 (U_B) und Pin 8 einmal kurzzeitig brücken	LED blinkt einmal grün	
Modus 2 "Untere Halbku- gel" ± 90°	Pin 1 (U_B) und Pin 8 zweimal kurzzeitig brücken	LED blinkt zweimal grün	
Modus 3, 2 × 360°	Pin 1 (U_B) und Pin 8 dreimal kurzzeitig brücken	LED blinkt dreimal grün	
Modus 4, X: 0360°, Y: aus	Pin 1 (U_B) und Pin 8 viermal kurzzeitig brücken	LED blinkt viermal grün	
Modus 5, Y: 0360°, X: aus	Pin 1 (U _B) und Pin 8 fünfmal kurzzeitig brücken	LED blinkt fünfmal grün	
Modus für Filtereinstellung	Pin 3 (GND) und Pin 8 für 10 s brücken Innerhalb von 10 s muss gebrückt oder der Taster betä- tigt werden, sonst wird dieser Modus verlassen	LED leuchtet gelb dauerhaft – nach 10 s: LED blinkt gelb	
Filter A, 24 Hz (für Programmier- adapter Q20L60), Werkseinstellung	Pin 3 (GND) und Pin 8 einmal kurzzeitig brücken	LED blinkt einmal gelb	
Filter B, 15 Hz	Pin 3 (GND) und Pin 8 zweimal kurzzeitig brücken	LED blinkt zweimal gelb	
Filter C, langsamer, aber störunanfälliger Filter	Pin 3 (GND) und Pin 8 dreimal kurzzeitig brücken	LED blinkt dreimal gelb	
Werkseinstellung	Pin 3 (GND) oder Pin 1 (U _B) und Pin 8 für 15 s brücken	nach 15 s: LED blinkt gelb/grün schnell	

Industrielle Automation

HINWEIS

Beachten Sie, dass sich durch die Veränderung des Nullpunkts auch Messbereichsanfang und -ende um den Offset verändern. Bei den Funktionen "Obere Halbkugel" und "Untere Halbkugel" ist ein Nullpunkt-Offset nur möglich, wenn durch den Offset der Messbereich nicht außerhalb des definierten Bereichs von 0°...90° bzw. 0°...270° bzw. 180°...90° bzw. 180°...270° (siehe Fig. 2, Seite 8) liegt.

5 Parametrierung über PACTware[™] und IODD

Unter www.turck.com können das Softwaretool PACTware[™], sowie der IODD-Interpreter und die IODD-Datei des Neigungssensors heruntergeladen werden. Ist PACTware[™] installiert, muss die IODD-Datei "IODD_IOL_B2N360-Q42.zip" mit dem IODD-Interpreter aktiviert und der Gerätekatalog in PACTware[™] aktualisiert werden. Als notwendige Hardwarekomponenten sind folgende Geräte erforderlich:

- B2N360-Q42... (der zu parametrierende Sensor)
- IO-Link-Master
- Adapterkabel RKC8.4T-1,5-RSC4T/TX320; Ident-Nr.: 6625002

5.1 System konfigurieren

Name	Wert	Standardwert
System-Konfiguration		
Betriebsart	1 (Neigung)	
··· Tiefpass-Filter A	24 (Grenzfrequenz 24Hz)	✓ 24 (Grenzfrequenz 24Hz)
Tiefpass-Filter B	15 (Grenzfrequenz 15Hz)	
Tiefpass-Filter C	0 (Grenzfrequenz niedrigste)	 0 (Grenzfrequenz niedrigste)
Aktiver Filter	1 (Filter A)	

Unter dem Menüpunkt "Betriebsart" können Sie den Sensor entweder als Neigungs- oder als Beschleunigungssensor (siehe auch dazu Seite 11) konfigurieren. Eine Einstellung unterschiedlicher Tiefpass-Filter ist möglich. Störungen unterschiedlicher Frequenzbereiche können somit unterdrückt werden. Je nach Applikationsanforderung sollten Sie die geeignete Filtereinstellung mittels PACTware[™] parametrieren und testen. Dabei lassen sich drei Filtereinstellungen (Filter A, B, C) festgelegen. Für jede dieser Einstellungen können Sie aus über 30 verschiedenen Filterwerten die richtige wählen. Unter dem Menüpunkt "Aktiver Filter" lässt sich abschließend die aktive Filtereinstellung wählen.

Diese drei Filtereinstellungen (Filter A, B, C) lassen sich auch mittels Teach-Funktion (siehe vorherige Seite 6) ohne IO-Link-Kommunikation einstellen.

5.2 Winkel konfigurieren

Winkel-Konfiguration			
Montageposition	1 (Position M1 0°)	•	1 (Position M1 0°)
Funktionsbereich	1 (Obere Halbkugel)		1 (Obere Halbkugel)

Unter dem Menüpunkt "Montageposition" können Sie den Sensor an die jeweilige Applikation angepassen. Im Default-Zustand (Obere Halbkugel) liefert der Sensor Ausgangswerte in der Neigungsposition für die Achsen X und Y von 5 V bzw. 12 mA als Nullpunkt. Es lassen sich alle sechs möglichen Montagepositionen mit diesem Ausgangsverhalten konfigurieren. Soll der Steckverbinder z. B. nach oben abgehen, kann dies unter diesem Menüpunkt eingestellt werden.

Die werksseitige Achsenzuordnung ist im folgenden Bild dargestellt:

Fig. 1: Achsenzuordnung

Der Menüpunkt "Funktionsbereich" bietet fünf mögliche Funktionen (siehe auch Parametrierung über Teach-Funktion, Seite 6):

1 Obere Halbkugel (siehe Fig. 2) 2 Untere Halbkugel (siehe Fig. 2)

- 3 (2 × 360°)
- 4 (360° X)
- 5 (360° Y)

Obere und untere Halbkugel sind folgendermaßen definiert:

Fig. 2: Definition der oberen und unteren Halbkugel

1 Obere Halbkugel

Diese Funktion ist die Default-Einstellung. Der Sensor bietet die Möglichkeit, sämtliche Winkelbereiche von 0°...±90° über die Xund die Y-Achse zu erfassen.

HINWEIS: In PACTware[™] werden Winkel als Absolutwert zwischen 0...359,99° angegeben. Eine Eingabe von negativen Bereichen ist also nicht möglich. Nachfolgend werden einige Standard-Messbereiche aufgezeigt:

 $\pm 45^{\circ} = 315^{\circ} \dots 45^{\circ}$ $\pm 60^{\circ} = 300^{\circ} \dots 60^{\circ}$ $\pm 30^{\circ} = 330^{\circ} \dots 30^{\circ}$ $\pm 10^{\circ} = 350^{\circ} \dots 10^{\circ}$

2 Untere Halbkugel

Der Sensor bietet die Möglichkeit, sämtliche Winkelbereiche von 180°...90° bzw. 180°...270° über die X- und die Y-Achse zu

Der Sensor erfasst über die X- und die Y-Achse den kompletten Winkelbereich von 0°...360°. Es ist hierbei zu beachten, dass

Die X-Achse wird über den gesamten Bereich (0°...360°) ausgegeben. Die Y-Achse ist ausgeschaltet.

5 (360° Y)

Die Y-Achse wird über den gesamten Bereich (0°...360°) ausgegeben. Die X-Achse ist ausgeschaltet.

erfassen.

3 (2 x 360°)

sich prinzipbedingt die Ausgangsverläufe der Analogwerte gegenseitig beeinflussen können. 4 (360° X)

Industrie**ll**e Automation

5.3 Analoge Ausgänge konfigurieren

Über den Menüpunkt "Ausgangsart" können Sie den Analogausgang entweder als Stromoder als Spannungsausgang definieren.

"Unterer Grenzwert" bzw. "oberer Grenzwert" legen die Aussteuergrenzen des Analogausgangs fest. Diese sind zwischen 0 mA/0 V und 20 mA/10 V frei wählbar. Es ist auch möglich, z. B. 0...10 mA als Ausgangsbereich zu wählen.

Die "Messbereichsüberschreitung" legt fest, wie sich der Sensor bei Überschreitung des eingestellten Messbereiches verhält. Entweder wird der Grenzwert gehalten oder es wird ein Fehlersignal ausgegeben.

Beim "Drehsinn" kann zwischen "Uhrzeigersinn" und "Gegen den Uhrzeigersinn" gewählt werden. Die "Untergrenze Messbereich" bzw. "Obergrenze Messbereich" legt den aktiven Bereich des Sensors fest. Wollen Sie z. B. einen Erfassungsbereich von ±30° parametrieren, wird unter diesem Menüpunkt 330° (Untergrenze) und 30° (Obergrenze) bei Drehsinn "im Uhrzeigersinn" eingestellt.

Für die Ober- und Untergrenze kann auch die gegenwärtige Neigungslage des Sensors verwendet werden. Dieses können Sie durchführen unter dem Menüpunkt "Obergrenze Messbereich anlernen" bzw. "Untergrenze Messbereich anlernen" (siehe auch Teach-Funktion Seite 6). Wird der Sensor auf eine Fläche montiert, deren Neigung als Nullpunkt (5 V bzw. 12 mA) verwendet wird, lässt sich dies durch Anwahl des Menüpunktes "Nullpunkt anlernen" konfigurieren.

Zur Werteeingabe bei Verschiebung des Nullpunktes dient der Menüpunkt "Nullpunkt" (siehe auch Teach-Funktion Seite 6).

5.4 Digitale Ausgänge konfigurieren

🖻 Ausgang 1		
Neigungsachse	1 (X)	▼ 1 (X)
··· Ausgangsart	1 (PNP)	
Schaltpunkt AN	0 °	0.
··· Schaltpunkt AN anlernen	1 (Anlernen)	
Schaltpunkt AUS	0 °	0 °
Schaltpunkt AUS anlernen	(Anlernen)	
Hysterese	0 °	0 °
Invertierung	0 (Nicht invertiert)	▼ 0 (Nicht invertiert)

Pin 2 und Pin 4 des Neigungsensors können als Schaltausgang verwendet werden. Der Schaltpunkt und die Schaltfenster werden unter "Digitale Ausgänge" als Ausgang 1 (Pin 2) und Ausgang 2 (Pin 4) wie folgt definiert.

Mit dem Menüpunkt "Neigungsachse" legen Sie fest, welche Achse (X oder Y) bei der Schaltpunktermittlung zugrunde gelegt wird. Bei der "Ausgangsart" lässt sich zwischen PNP- und NPN-Funktion wählen.

Unter "Schaltpunkt AN anlernen" und "Schaltpunkt AUS anlernen" werden die gegenwärtigen Neigungslagen zur Definition des Schaltfensters verwendet. "Schaltpunkt AN" bzw. "Schaltpunkt AUS" dienen dazu, den Winkelbereich für das Schaltfenster im Klartext einzugeben.

Außerdem lässt sich eine "Hysterese" (0,01° oder größer) für die Schaltpunkte oder eine "Invertierung" parametrieren.

TURCK

Industrielle Automation

5.5 Betriebsart "Beschleunigung" konfigurieren

Ģ	System-Konfiguration		
	Betriebsart	3 (Beschleunigung X/Y linear)	
	Tiefpass-Filter A	24 (Grenzfrequenz 24Hz)	▼ 24 (Grenzfrequenz 24Hz)
	- Tiefpass-Filter B	15 (Grenzfrequenz 15Hz)	✓ 15 (Grenzfrequenz 15Hz)
	Tiefpass-Filter C	0 (Grenzfrequenz niedrigste)	▼ 0 (Grenzfrequenz niedrigste)
	Aktiver Filter	1 (Filter A)	↓ 1 (Filter A)

In der System-Konfiguration (siehe auch Seite 7) können Sie zwischen der Betriebsart "Neigung" und "Beschleunigung" wählen.

In der Auswahl "Beschleunigung X/Y linear" wird die Beschleunigung in X-und Y-Richtung separat analog ausgegeben. Die erfassbaren Beschleunigungswerte betragen ± 2 g, wobei der Ausgangswert 0 V bzw. 0 mA bei -2 g, 5 V bzw. 10 mA bei 0 g und 10 V bzw. 20 mA bei 2 g beträgt.

Die folgende Draufsicht (Fig. 3) zeigt die entsprechenden Beschleunigungsrichtungen:

Fig. 3: Beschleunigungsrichtungen X/Y linear (Draufsicht)

In der Betriebsart, Beschleunigung Vektorbetrag 2D" bzw., Beschleunigung Vektorbetrag 3D" nutzt der Sensor einen Analogausgang (Pin 5). Die Richtung der Beschleunigung wird dabei nicht berücksichtigt, sondern es wird nur der Betrag ausgegeben. Fig. 4 zeigt die entsprechende Beschleunigungsrichtung für den "Vektorbetrag 2D"; Fig 5 für den "Vektorbetrag 3D". Ermittelbar sind Werte von 0 g = 0 V bzw. 0 mA bis 2 g = 10 V bzw 20 mA.

Darüber hinaus kann ein Schaltausgang als Schwellwert-Schalter definiert werden, d. h. bei Überschreiten eines frei wählbaren Schwellenwertes schaltet der Schaltausgang für eine Zeitspanne von mindestens 1 Sekunde durch.

Fig. 4: Beschleunigungsrichtungen Vektorbetrag 2D (Draufsicht)

Fig. 5: Beschleunigungsrichtungen Vektorbetrag 3D (Draufsicht)

Neigungssensoren mit IO-Link-Technologie – Allgemeine technische Daten

6 Allgemeine technische Daten

Messbereichsangaben	
Messbereich	0360°
Messbereich x-Achse	0360°
Messbereich y-Achse	0360°
System	
Auflösung	16 bit
Reproduzierbarkeit/Wiederholgenauigkeit	≤ 0,06 %
Linearitätsabweichung	≤ 0,3 % v. E. abhängig von der Filtereinstellung
lemperaturdrift	$\leq \pm 0.015$ % / K
omgebungstemperatur	B2N360-Q42-E2LI0PN8X2-H1181: -25+70 °C B2N360-Q42-E2LiUPN8X2-H1181/S97: -40+70 °C
Elektrische Daten	
Betriebsspannung	B2N360-Q42-E2LiUPN8X2-H1181: 1530 VDC B2N360-Q42-E2LiUPN8X2-H1181/S97: 730 VDC
Restwelligkeit	\leq 10 % U _{SS}
Bemessungsbetriebsstrom	≤ 150 mA
Bemessungsisolationsspannung	≤ 0,5 kV
Kurzschlussschutz	ja
Drahtbruchsicherheit/Verpolungsschutz	ja/vollständig
Ausgangsfunktion	Achtdraht, Schließer/Offner, PNP/NPN, Analogaus-
c.	gang
Spannungsausgang	010 V
Stromausgang	420 MA
Lastwiderstand Spannungsausgang	> 4.7 kO
Lastwiderstand Stromausgang	$\geq 4,7$ KS2 < 0.4 kO
Abtastrate	500 Hz
Bauform/Gehäuse	
Bauform	Quader, Q42
Abmessungen	$67,5 \times 42,5 \times 42,5$ mm
Gehäusewerkstoff	Kunststoff, PA 12-GF30
Anschluss Milwetiewefectielerit	Steckverbinder, M12 \times 1
Vibrationsfestigkeit	55 HZ (1 mm)
SCHOCKTESTIGKEIT	
SCHULZALL (IEC 00529/EIN 00529) MTTE	150 Jahro pach SN 20500 (Ed. 00) 10 °C
LED-Anzeigen	159 Jaine Hach Six 29500 (Eu. 99) 40 C
Betriebsbereitschaft	1 × LED grün
Schaltzustandsanzeige	1 × LED gelb

Anschlussbild

Neigungssensoren mit IO-Link-Technologie – Technische Daten

7 IO-Link – Technische Daten

Physik	Physik 2 (3-Wire)
Com-Type	Standard: COM 2 (38400 Baud)
Frametype	Frametype 2.2

7.1 Parameterdaten

Der Sensor kann über die IO-Link-Parameterdaten ausgelesen und eingestellt werden.

7.1.1 Systemparameter (System Command)

Neustart der Kommunikation. Der Subindex ist "0".

Index (hex.)	Index (dez.)	R/W	Funktion
0x02	2	W	1: Neustart

7.2.2 Geräte-Identifikation (Identification)

Der Subindex ist generell "0".

Folgende Parameter können ausgelesen werden:

- Herstellername
- Herstellertext
- Produktname
- Produkt ID
- Produkttext
- Seriennummer
- Hardwareversion
- Firmwarerevision

Folgender Parameter kann ausgelesen und eingestellt werden:

Spezifischer Name der Applikation

Index (hex.)	Index (dez.)	R/W	Funktion
0x10	16	R	Herstellername
0x11	17	R	Herstellertext
0x12	18	R	Produktname
0x13	19	R	Produkt-ID
0x14	20	R	Produkttext
0x15	21	R	Seriennummer
0x16	22	R	Hardware Rev.
0x17	23	R	Firmware Rev.
0x18	24	R/W	Spezifischer Name in der Applikation

Neigungssensoren mit IO-Link-Technologie – Technische Daten

7.1.3 Analoge Prozessdaten (Analog process data)

Hier können die Messwinkel in x-Richtung und y-Richtung ausgelesen (R) werden.

Index (hex.)	Index (dez.)	R/W	Funktion
0x40	64	R	Messwinkel X
0x41	65	R	Messwinkel Y

7.1.4 Teach-Funktion (Teach in)

Folgende einlernbare Parameter können ausgelesen (R) und/oder eingestellt (W) werden. Der Subindex ist generell "0".

Index (hex.)	Index (dez.)	R/W	Format	Funktion		
0x70	112	R/W	UINT8	Betriebsart. 1: Neigung/(2: Vibration)/3: Beschleunigung XY/4: Beschleunigung 2D		
0x71	113	R/W	UINT8	Filter Auswahl A.030, 255: deaktiviert		
0x72	114	R/W	UINT8	Filter Auswahl B. 030, 255: deaktiviert		
0x73	115	R/W	UINT8	Filter Auswahl C. 030, 255: deaktiviert		
0x74	116	R/W	UINT8	Filter aktive Auswahl: AC		
0x80	128	R/W	UINT8	Konfiguration analoger Ausgang X, 1: I/2: U		
0x81	129	R/W	UINT16	Konfiguration analoger Ausgang X, unterer Grenzwert in mV / 0,001mA		
0x82	130	R/W	UINT16	Konfiguration analoger Ausgang X, oberer Grenzwert in mV / 0,001mA		
0x83	131	R/W	UINT8	Verhalten Overrange X 1: Endwert/2: Fehlersignal		
0x84	132	R/W	UINT8	Konfiguration analoger Ausgang X, Drehrichtung 1: CW/2: CCW		
0x85	133	R/W	UINT16	Anfang Messbereich X Eingabe in ° $ imes$ 100, Definitionsbereich 035999		
0x86	134	W	UINT8	Anfang Messbereich X Messung des aktuellen Winkels, 1: Messwertaufnahme		
0x87	135	R/W	UINT16	Ende Messbereich X Eingabe in ° $ imes$ 100, Definitionsbereich 035999		
0x88	136	W	UINT8	Ende Messbereich X Messung des aktuellen Winkels, 1: Messwertaufnahme		
0x89	137	R/W	UINT16	Nullpunktabgleich X Eingabe in ° $ imes$ 100, Definitionsbereich 035999		
0x8A	138	W	UINT8	Nullpunktabgleich X Messung des aktuellen Winkels, 1: Messwertaufnahme		
0x8B	139	R/W		Nullpunktabgleich Beschleunigung XY: X Eingabe		
0x8C	140	W	UINT8	Nullpunktabgleich Beschleunigung XY: X Messung des aktuellen Wertes, 1: Messwertaufnahme		
0x8D	141	W	UINT8	Nullpunktabgleich Beschleunigung XY X, 1: Reset		
0x90	144	R/W	UINT8	Konfiguration analoger Ausgang Y, 1: I/2: U		
0x91	145	R/W	UINT16	Konfiguration analoger Ausgang Y, unterer Grenzwert in mV / 0,001mA		
0x92	146	R/W	UINT16	Konfiguration analoger Ausgang Y, oberer Grenzwert in mV / 0,001mA		
0x93	147	R/W	UINT8	Verhalten Overrange X 1: Endwert/2: Fehlersignal		
0x94	148	R/W	UINT8	Konfiguration analoger Ausgang Y, Drehrichtung 1: CW/2: CCW		
0x95	149	R/W	UINT16	Anfang Messbereich Y Eingabe in ° $ imes$ 100, Definitionsbereich 035999		
0x96	150	W	UINT8	Anfang Messbereich Y Messung des aktuellen Winkels,1: Messwertaufnahme		
0x97	151	R/W	UINT16	Ende Messbereich Y Eingabe in ° \times 100, Definitionsbereich 035999		
0x98	152	W	UINT8	Ende Messbereich Y Messung des aktuellen Winkels, 1: Messwertaufnahme		
0x99	153	R/W	UINT16	Nullpunktabgleich Y Eingabe in ° *100, Definitionsbereich 0…35999		
0x9A	154	W	UINT8	Nullpunktabgleich Y, Messung des aktuellen Winkels 1: Messwertaufnahme		
0x9B	155	R/W		Nullpunktabgleich, Beschleunigung XY, X Eingabe		
0x9C	156	R/W	UINT8	Nullpunktabgleich, Beschleunigung XY, X Messung des aktuellen Wertes 1: Messwertaufnahme		
weiter auf nächster Seite						

Neigungssensoren mit IO-Link-Technologie – Technische Daten

Industrielle Automation

Index (hex.)	Index (dez.)	R/W	Format	Funktion
0x9D	157	W	UINT8	Nullpunktabgleich, Beschleunigung XY, Y 1: Reset
0x9E	158	W	UINT8	Nullpunktabgleich, Beschleunigung 3D 1: Messwertaufnahme
0x9F	159	W	UINT8	Nullpunktabgleich, Beschleunigung 3D 1: Reset
0xA0	160	R/W	UINT8	Schaltausgang 1 Achse, 1: X/2: Y
0xA1	161	R/W	UINT8	Schaltausgang 1 Typ NPN/PNP, 1: PNP/2: NPN
0xA2	162	R/W	UINT16	Schaltausgang 1 AN Eingabe in ° $ imes$ 100, Definitionsbereich 035999
0xA3	163	W	UINT8	Schaltausgang 1 AN Messung des aktuellen Winkel, 1: Messwertaufnahme
0xA4	164	R/W	UINT16	Schaltausgang 1 AUS Eingabe in $^\circ$ $ imes$ 100, Definitionsbereich 0…35999
0xA5	165	W	UINT8	Schaltausgang 1, AUS Messung des aktuellen Winkels, 1: Messwertaufnahme
0xA6	166	R/W	UINT8	Schaltausgang 1, Hysterese in °×100, Definitionsbereich 0…35999
0xA7	167	R/W	UINT8	Schaltausgang 1, Invertierung Schaltbereich
0xA8	168	R/W	UINT16	Schaltausgang 1, Schwelle eingeben 0 2000 mg, Beschleunigung XY, X-Richtung
0xA9	169	R/W	UINT16	Schaltausgang 1, Schwelle eingeben 02000 mg, Beschleunigung 2D
0xAA	170	R/W	UINT16	Schaltausgang 1, Schwelle eingeben 02000 mg, Beschleunigung 3D
0xB0	176	R/W	UINT8	Schaltausgang 2, Achse 1: X/2: Y
0xB1	177	R/W	UINT8	Schaltausgang 2, Typ NPN/PNP, 1: PNP/2: NPN
0xB2	178	R/W	UINT16	Schaltausgang 2, AN Eingabe in $^\circ imes$ 100, Definitionsbereich 0…35999
0xB3	179	W	UINT8	Schaltausgang 2, AN Messung des aktuellen Winkels, 1: Messwertaufnahme
0xB4	180	R/W	UINT16	Schaltausgang 2, AUS Eingabe in $^\circ$ ×100, Definitionsbereich 035999
0xB5	181	W	UINT8	Schaltausgang 2, AUS Messung des aktuellen Winkels, 1: Messwertaufnahme
0xB6	182	R/W	UINT8	Schaltausgang 2, Hysterese in ° $ imes$ 100, Definitionsbereich 035999
0xB7	183	R/W	UINT8	Schaltausgang 2, Invertierung Schaltbereich
0xB8	184	R/W	UINT16	Schaltausgang 1, Schwelle eingeben 02000 mg, Beschleunigung XY, Y-Richtung
0xC0	192	R/W	UINT8	Funktionsauswahl, 1: obere Halbkugel; 2: untere Halbkugel; 3: $2 \times 360^\circ$; 4: 360° X; 5: 360° Y
0xC1	193	R/W	UINT8	Montageposition, 1: Normal; 2: 90° Y; 3: 180°; 4: 270° Y;5: 90° X; 6: 270° X

7.1.5 Rücksetzung auf Werkseinstellungen (Factory reset)

Der Subindex ist "0".

Index (hex.)	Index (dez.)	R/W	Format	Funktion
0xCF	207	W	UINT8	1: Factory Reset

Industrielle Automation

www.turck.com

Hans Turck GmbH & Co. KG 45472 Mülheim an der Ruhr Germany Witzlebenstraße 7 Tel. +49 (0) 208 4952-0 Fax +49 (0) 208 4952-264 E-Mail more@turck.com Internet www.turck.com