

ARGEE 3
Libraries

0819A

2

1 Library Basics 3

1.1 Creating a Library 3

1.2 Importing a Library 3

2 Downloadable Libraries 4

2.1 MISC Library 4

2.1.1 MISC library Available Function Blocks 4
2.1.2 wait_ms 4
2.1.3 NUMBER_st 4
2.1.4 Copy_byte_arr 5
2.1.5 copy_byte_to_word_arr 5
2.1.6 copy_word_to_byte_arr 6
2.1.7 compare_byte_arrays 6
2.1.8 convArrToString 7
2.1.9 compare_and_copy 8
2.1.10 STR_AddSpecialChar 8
2.1.11 copy_byte_to_long_arr 9
2.1.12 copy_long_to_byte_arr 9

2.2 IO-Library 10

2.2.1 IO Library Available Function Blocks 10
2.2.2 TBEN_IOL_AsyncWrite 10
2.2.3 TBEN_IOL_AsyncRead 10
2.2.4 TBEN_S2_RFID_READ 11
2.2.5 TBEN_S2_RFID_WRITE 12
2.2.6 BLCEN_RFIDS_Read 12
2.2.7 BLCEN_RFIDS_Write 13

3

1 Library Basics

A library in ARGEE 3 is simply any collection of function blocks and states which are grouped together to improve
the readability and structure of the program. Libraries can easily be created in ARGEE PRO and then exported
and imported to use in other projects. Libraries are a great way to add functionality to ARGEE without making
changes to the underlying programming environment. Turck already offers some libraries for download to help with
simple common tasks (MISC library) or simplify more complex task like RFID and IO-Link specific data handling
(IO-Library).

1.1 Creating a Library

First click on the Add Library button.

Then create the desired function blocks.

Once the library is complete, select Export Library from the library context menu.

1.2 Importing a Library

Import an already pre-built library by clicking on the Choose Files button.

NOTE

If the user try’s to import a library with the same name as an already installed
library, ARGEE will ask the user remove the first library before importing the
second.

4

2 Downloadable Libraries

In addition to creating libraries, the user can download official ARGEE libraries from the Turck Website

2.1 MISC Library

The MISC library contains commonly used functions that can greatly simply more advanced ARGEE projects

2.1.1 MISC library Available Function Blocks

- Wait_ms – Delays program execution for x-number of ms
- Number_ST – used to pass arguments to functions by reference (similar to Pointer)
- Copy_byte_arr – Copies the data from one byte array to another byte array
- copy_byte_to_word_arr – Copies the data from a byte array to a word array
- copy_word_to_byte_arr – Copies the data from a word array to a byte array
- compare_byte_arrays – Compares two arrays and sets a response to 0 if they aren’t the same
- convArrToString – Converts the data in a byte array into a string
- compare_and_copy – Copies a array into another array and sets a response to 1 if they arrays

are different
- STR_AddSpecialChar – Adds a character to the end of a string
- copy_byte_to_long_arr – Copies a byte array to a number
- copy_long_to_byte_arr – Copies a number to a byte array

2.1.2 wait_ms

Function: When wait_ms is called it halts the task execution for the designated amount of time.

Scope Name Type Comment

Input wait_time_in_ms Number Delay time in ms

Program Variables: A wait_ms program variable is needed to call the function.

How to Call: The Call needs a wait time in ms argument. This can be a static number or a number
program variable.

2.1.3 NUMBER_st

Function: The function of NUMBER_st is to pass a number to a function block by reference (similar

to using pointers)

 *This function block has no arguments.

https://pdb2.turck.de/repo/media/_us/Anlagen/ARGEE_V3_sample.zip

5

Program Variables: The only variable needed is a NUMBER_st variable.

How to Call: This function block is not really called instead a number is assigned to the variable in
the function block as shown below.

2.1.4 Copy_byte_arr

Function: copy_byte_arr copies the data from a source byte array to a destination byte array, and

the data from the source and to the destination can both be offset.

Scope Name Type Comment

Input src Byte Array Source that will be copied

Input offset_src Number Offset of the source array

Input offset_dst Number Offset of the destination array

Input len Number Length of the data being moved in bytes

Output dst Byte Array Destination of the data being copied

Program Variables: The program variables needed are the copy_byte_to_word_arr to call, the
length of the arrays (in this case 32), and source and destination arrays. Offset values are also used
but they do not need to be variables.

How to Call: To call copy_byte_arr the user needs the source array, the destination array, a source
offset number, a destination offset number, and number to represent the length of the arrays.

2.1.5 copy_byte_to_word_arr

Function: copy_byte_to_word_arr copies the data from a source byte array to a destination word

array, and the data from the source and to the destination can both be offset.

Scope Name Type Comment

Input src Byte Array Source that will be copied

Input offset_src Number Offset of the source array

Input offset_dst Number Offset of the destination array

Input len_words Number Length of the data being moved in words

Output dst Word Array Destination of the data being copied

6

Program Variables: The program variables needed are the copy_byte_to_word_arr to call, the
length of the arrays (in this case 32), and source and destination arrays. Offset values are also used
but they do not need to be variables.

How to Call: To call copy_byte_to_word_arr the user needs the source array, the destination array,
a source offset number, a destination offset number, and number to represent the length of the
arrays.

2.1.6 copy_word_to_byte_arr

Function: copy_word_to_byte_arr copies the data from a source word array to a destination byte

array, and the data from the source and to the destination can both be offset.

Scope Name Type Comment

Input src Byte Array Source that will be copied

Input offset_src Number Offset of the source array

Input offset_dst Number Offset of the destination array

Input len_words Number Length of the data being moved in words

Output dst Word Array Destination of the data being copied

Program Variables: The program variables needed are the copy_word_to_byte_arr to call, the
length of the arrays (in this case 32), and source and destination arrays. Offset values are also used
but they do not need to be variables.

How to Call: To call copy_word_to_byte_arr the user needs the source array, the destination array,
a source offset number, a destination offset number, and number to represent the length of the
arrays.

2.1.7 compare_byte_arrays

Function: compare_byte_arrays looks at two byte arrays and sets a response (res) variable to 0 if

the arrays aren’t the same.

7

Scope Name Type Comment

Input arr1 Byte Array One of the arrays to be compared

Input arr2 Byte Array Other array to be compared

Input len Number Number of bytes being compared

Program Variables: The program variables needed are the compare_byte_arrays to call, the length
of the arrays, and the two arrays being compared.

How to Call: To call compare_byte_arrays the user needs the two arrays, and number to represent
the length of the arrays.

2.1.8 convArrToString

Function: convArrToString copies the data from a source byte array to a destination string, and the

data from the source or the destination can both be offset.

Scope Name Type Comment

Input src Byte Array Source that will be converted

Input offset_src Number Offset of the source array

Input offset_dst Number Offset of the destination array

Input len Number Length of the data being moved in words

Output dst String String where the data is being output

Program Variables: The program variables needed are the convArrToString to call, the length of
the arrays, and source and destination arrays. Offset values are also used but they do not need to
be variables.

How to Call: To call copy_word_to_byte_arr the user needs the source array, the destination array,
a source offset number, a destination offset number, and number to represent the length of the
arrays.

8

2.1.9 compare_and_copy

Function: compare_and_copy looks at two byte arrays (the current array that is being copied and

the previous array that is being copied to) and sets a changed variable to 1 if the arrays aren’t the

same and copies one of the arrays to the other.

Scope Name Type Comment

Input curr_arr Byte Array Source that will be copied and compared

Output prev_arr Byte Array Output array that is also compared

Input num_elems Number Number of bytes being compared/ copied

Program Variables: The program variables needed are the compare_and_copy to call, the length of
the arrays, and the two arrays being compared.

How to Call: To call compare_and_copy the user needs the two arrays, and number to represent
the length of the arrays being compared/ copied.

2.1.10 STR_AddSpecialChar

Function: STR_AddSpecialChar looks at a string array and adds a character to the end of it.

Scope Name Type Comment

Input char Byte Character that will be added to the string

Output str1 String String that char will be added to

Program Variables: The program variables needed are the STR_AddSpecialChar to call, the string
array, and the character being added.

How to Call: To call STR_AddSpecialChar the user needs a string, and the character (as a byte)
being added to it.

9

2.1.11 copy_byte_to_long_arr

Function: copy_byte_to_long_arr copies the data from a source byte array to a destination number

array, and the data from the source and to the destination can both be offset.

Scope Name Type Comment

Input src Byte Array Source that will be copied

Input offset_src Number Offset of the source array

Input offset_dst Number Offset of the destination array

Input len_longs Number Length of the data being moved

Output dst Number Destination of the data being copied

Program Variables: The program variables needed are the copy_byte_to_long_arr to call, the
length of the arrays, and source and destination arrays. Offset values are also used but they do not
need to be variables.

How to Call: To call copy_byte_to_long_arr the user needs the source array, the destination array,
a source offset number, a destination offset number, and number to represent the length of the
bytes.

2.1.12 copy_long_to_byte_arr

Function: copy_long_to_byte_arr copies the data from a source number array to a destination byte

array, and the data from the source and to the destination can both be offset.

Scope Name Type Comment

Input src Number Source that will be copied

Input offset_src Number Offset of the source array

Input offset_dst Number Offset of the destination array

Input len_longs Number Length of the data being moved

Output dst Byte Array Destination of the data being copied

Program Variables: The program variables needed are the copy_word_to_byte_arr to call, the
length of the arrays (in this case 32), and source and destination arrays. Offset values are also used
but they do not need to be variables.

10

How to Call: To call copy_word_to_byte_arr the user needs the source array, the destination array,
a source offset number, a destination offset number, and number to represent the length of the
arrays.

2.2 IO-Library

The IO-Library contains IO-Link and RFID functions that can greatly simply more advanced ARGEE projects

2.2.1 IO Library Available Function Blocks

- TBEN_IOL_AsyncWrite – Delays program execution for x-number of ms
- TBEN_IOL_AsyncRead – used to pass arguments to functions by reference (similar to Pointer)
- TBEN_S2_RFID_READ – Copies the data from one byte array to another byte array
- TBEN_S2_RFID_WRITE – Copies the data from a byte array to a word array
- BLCEN_RFIDS_Read – Copies the data from a word array to a byte array
- BLCEN_RFIDS_Write – Compares two arrays and sets a response to 0 if they aren’t the same

2.2.2 TBEN_IOL_AsyncWrite

Function: When TBEN_IOL_AsyncWrite is called the data from a byte array is written into a chosen

index and sub index.

Scope Name Type Comment

Input port_num Number Port that the data is being written to

Input index Number IO-Link index being written to

Input sub_index Number IO-Link sub index being written to

Input write_data Byte Array IO-Link data being written

Input write_data_length Number Length of the IO-Link index being written to

Program Variables: The only program variables needed are a TBEN_IOL_AsyncWrite variable, and
a byte array variable.

How to Call: To call TBEN_IOL_AsyncWrite the following arguments need to be satisfied, the port
that is being used, the parameter index that the user is trying to write into, the sub index that the
user is trying to write into, the byte array that is being written, and the length of the array being
written.

2.2.3 TBEN_IOL_AsyncRead

Function: When TBEN_IOLAsyncRead is called the parameter data from a chosen index and sub

index is read into the ds_tx_array and ds_rx_array.

Scope Name Type Comment

11

Input port_num Number Port that the data is being read from

Input index Number IO-Link index being read from

Input sub_index Number IO-Link sub index being read from

Output reset_data Byte Array Read data is stored here

Program Variables: The variables needed to call TBEN_IOL_AsyncRead are a
TBEN_IOL_AsyncRead variable, and a byte array variable.

How to Call: To call TBEN_IOL_AsyncRead the following arguments need to be filled; the port that
is being used, the parameter index that the user is trying to read, the sub index that the user is trying
to read, and a reset byte array.

2.2.4 TBEN_S2_RFID_READ

Function: TBEN_S2_RFIDS_READ when called waits for the next tag to be presented and reads it,

and that data is held in the input read data.

Scope Name Type Comment

Input channel Number Port that the data is being read from

Input offset Number Offset in bytes of the data being read

Input length Number Number of bytes being read

Input array_offset Number Offset of the data being stored

Output output_array Byte Array Where the read data is stored

Program Variables: To call TBEN_S2_RFIDS_READ a TBEN_S2_RFIDS_READ variable, and a
byte array are needed.

How to Call: When calling TBEN_S2_RFIDS_READ the following arguments need to be fulfilled;
which channel is being used, how much the data being read should be offset, the number of bytes
that are being read from the tag, the reset data byte array, and how much the array data should be
offset.

12

2.2.5 TBEN_S2_RFID_WRITE

Function: The function of the TBEN_S2_RFID_WRITE when called writes the data from a byte

array is written onto the next tag that is presented into the transceiver’s field.

Scope Name Type Comment

Input channel Number Port that the data is being written to

Input offset Number Offset in bytes of the data being written

Input length Number Number of bytes being written

Input array_offset Number Offset of the data being written

Output res_data Byte Array Data being written

Program Variables: To call TBEN_S2_RFID_WRITE a TBEN_S2_RFID_WRITE variable is
needed, and a Byte array that holds the data that is being written is needed.

How to Call: The arguments needed to call TBEN_S2_RFID_WRITE are, which channel is being
used, how much the data being written should be offset onto the tag, the length of the array being
written onto the tag, the data array that is being written onto the tag, and how much the array data
being written should be offset.

2.2.6 BLCEN_RFIDS_Read

Function: BLCEN_RFIDS_Read when called waits for the next tag to be presented to read, and

that data is held in the input read data.

Scope Name Type Comment

Input slot Number Slot on the BLCEN being read from

Input channel Number Port that the data is being read from

Input offset Number Offset in bytes of the data being read

Input num_bytes_to_read Number Number of bytes being read

Output output_array Byte Array Where the read data is stored

Program Variables: To call BLCEN_RFIDS_Read a BLCEN_RFIDS_Read variable, and a byte
array are needed.

13

How to Call: When calling BLCEN_RFIDS_Read the following arguments need to be fulfilled; what
slot of the BLCEN has the 2RFID channels, which channel is being used, how much the data being
read should be offset, the reset data byte array, and the number of bytes that are being read from
the tag.

2.2.7 BLCEN_RFIDS_Write

Function: When BLCEN_RFIDS_Write is called the data from an outp_data is written onto the next

tag that is put into the transvers field.

Scope Name Type Comment

Input slot Number The BLCEN slot being written to

Input channel Number Port that the data is being written to

Input offset Number Offset in bytes of the data being written

Input num_bytes_to_write Number Number of bytes being written

Output outp_data Byte Array Data being written

Program Variables: To call BLCEN_RFIDS_Write a BLCEN_RFIDS_Write variable is needed, and
a Byte array that holds the data that is being written is needed.

How to Call: The arguments needed to call BLCEN_RFIDS_Write are, what slot of the BLCEN has
the 2RFID channels, which channel is being used, how much the data being written should be offset
onto the tag, the data array that is being written onto the tag, and the number of bytes that are being
written onto the tag.

TURCK sells its products through Authorized Distributors. These distributors provide our customers
with technical support, service and local stock. TURCK distributors are located nationwide –

Including all major metropolitan marketing areas
For Application Assistance or for the location of your nearest TURCK distributor, call:

1-800-544-7769

Specifications in this manual are subject to change without notice. TURCK also reserves the right to
make modifications and makes no guarantee of the accuracy of the information contained herein.

